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Abstract

In this paper, a general dynamic model is presented for studying the dynamic properties of rotor system supported by

ball bearings under the effects of both internal clearance and bearing running surface waviness. The ball bearing model

includes the high-speed effects of ball centrifugal force and gyroscopic moment. The cage speed is considered a time-

variation parameter related with the orbital speed of balls. Numerical results of this research are in good agreement with

prior authors’ experimental researches and already existing models. Then the model is employed to investigate the effects

of clearance, waviness, preload and radial force on the nonlinear stability and vibration behavior of a rotor bearing system

at high speed. It is shown that the clearance, axial preload and radial force play a significant role in affecting the system

stability. The effect of outer race waviness on cage speed variation is more considerable than that of inner race and ball

waviness.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Ball bearings are of great importance in numerous rotating machinery systems. They have widely been used
in high-speed spindle systems including aircraft gas turbines and rocket motors, due to the requirements for
high reliability and low power consumption. As demands on running accuracy and speed are increased,
vibration analysis of rotors supported by ball bearings is becoming more and more important. Ball bearings,
as one of sources of vibration, have attracted substantial attention because of their nonlinearity effects due to
the Hertzian force deformation relationship, the varying compliance, the internal clearance, the waviness and
so on. This situation creates considerable interest in analytical modeling of the bearing characteristics.

The effect on bearing static equilibrium of varying compliance was first studied by Perret [1] and Meldau [2].
Jones [3] proposed a quasi-static equilibrium model considering the effect of the centrifugal force and
gyroscopic moment of ball. The proposed model was generalized by Harris [4]. Dynamic effects of varying
compliance were investigated by Walters [5] who simulated the motion of the cage. Following his work, Gupta
[6] developed a dynamic model for both ball and cylindrical roller bearings. He pointed out that the dynamic
model eliminates most of the problems in the quasi-static model and provides a significant reduction in the
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

A amplitude of waviness in radial direction
(m)

B amplitude of waviness in axial direction
(m)

C amplitude of the ball waviness (m)
c clearance (m)
Db ball diameter (m)
Dp pitch diameter (m)
e rotor mass eccentricity (m)
F force (N)
{F} bearing force vector (N) or (Nm)
{f} force function vector (N) or (Nm)
g forces equilibrium function
I mass moment of inertia (kgm2)
K load-deflection constant for point con-

tact (Nm�1.5)
L nominal distance between rolling element

center and race center of curvature (m)
l actual distance between rolling element

center and race center of curvature (m)
M moment (Nm)
m mass (kg)
[m], [k], [d] system mass, stiffness and dam-

ping+gyroscopic matrices
N number of rolling elements
n waviness order
P external load (N)
p radial waviness (m)
Q contact force (N)
{Q} contact force vector of rolling element

(N)
q axial waviness (m)
r race radius of curvature (m)
(T) transformation matrix {U}-{u} (m)
t time (s)
{U} displacement vector of bearing center

fx y z yx yyg
T (m) or (rad)

{U} displacement vector of inner race center
of curvature fur uz ufg (m) or (rad)

v rolling element displacement (m)
w ball waviness (m)
{X} displacement vector of system DOF (m)

or (rad)
a contact angle (rad)
b angle between ball rotational axis and

bearing centerline (rad)
g Db=Dp

Dt time increment (s)
fDW g relative waviness vector (m)
d contact deformation or deflection (m)
z initial phase angle of ball waviness (rad)
Z initial phase angle of axial waviness (rad)
l constant determined by the race control

theory
x initial phase angle of radial waviness

(rad)
j angular location of rolling element (rad)
w identification parameter for contact
c angular location (rad)
o angular velocity, shaft angular velocity

(rad/s)

Subscripts

b rolling element
c cage
e centrifugal
g gyroscopic
i inner race
j rolling element index
m ball orbital
n waviness order
o outer race
p bearing center to nominal inter race

center of curvature
r, z, f r, z, f axes
x, y, z x, y, z axes
0 nominal
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overall design costs. Therefore, various nonlinear factors, bearing clearance and waviness especially, have
drawn much attention in order to obtain the effective dynamic property of rotor bearing systems.

Clearance between the balls and the bearing races is essential to ball bearings. Much work has been carried
out on its nonlinearity effects. The experimental studies of Gustafsson et al. [7] showed that clearance is an
important parameter for ball passage vibrations. Yamamoto [8] presents an analytical model to investigate the
vibrations of a vertical rotor supported by ball bearings with radial clearance. Childs [9] studied the effect of
non-symmetric clearance on rotor motion with the aid of perturbation method. Saito [10] investigated the
effect of radial clearance in an unbalanced Jeffcott rotor using the numerical harmonic balance technique.
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Several researchers have employed two-degree-of-freedom (2dof) dynamic models performing the nonlinear
simulation under the effect of clearance [11–14]. Mevel and Guyader [11] described different routes to chaos by
varying a control parameter. Tiwari et al. [12] studied the nonlinear behaviors of a balanced rotor due to the
effect of internal clearance of the ball bearing, and an unbalance rotor was analyzed in Ref. [13]. Harsha et al.
[14] simulated some dynamic response of rotor supported by ball bearings, using a 2dof model with clearance
and waviness. However, the 2dof models would not be accurate enough to perform the dynamic prediction of
rotor bearing systems when the bearings are loaded and displaced in five degrees of freedom. De Mul et al. [15]
presented a five-degree-of-freedom (5dof) model for calculation of the equilibrium and associated load
distribution in ball bearings. Bearing clearance and centrifugal force of ball were considered in their research.
Liew et al. [16] summarized 2dof and 5dof models with clearance, and illustrated the effect of ball centrifugal
force. They indicated that the significant effect of 5dof model is noticed at high speeds and light preloads.

On the other hand, many researchers have studied the vibrations caused by waviness of ball bearings.
Gustafsson et al. [7] studied the effect of not only clearance but also waviness and point out that low-order
outer ring waviness affects the amplitudes of vibrations at the ball passage frequency. Tallian and Gustafsson
[17] presented a linearized dynamic model analyzing the vibration caused by waviness. Yhland [18] examined
the correspondence between waviness and the resulting vibration spectrum. Wardle and Poon [19] reported
that the waviness produces most of the severe vibrations and noise problem in bearings. Later Wardle
theoretically [20] and experimentally [21] studied the relation between the frequencies harmonic of waviness
and bearing dynamic performance. A linear model was developed for the vibrations of a shaft bearing system
caused by waviness in Ref. [22]. The model is valid for low and medium speeds on account of neglected
centrifugal action of ball. Aktüuk [23] employed a 3dof dynamic model to simulate the radial and axial
vibrations of a rigid shaft supported by ball bearings, and the effect of bearing waviness on the vibration of the
shaft was investigated.

Jang and Jeong [24] proposed the 5dof excitation model of ball bearing waviness to investigate bearing
vibration. Then considering the centrifugal force and gyroscopic moment of ball, they developed an analytical
method to calculate the characteristics of the ball bearing under the effect of waviness in Ref. [25]. But they did
not consider the effect of internal clearance, which might play an important role in the transient dynamic
analysis of rotor supported by ball bearings. Otherwise the dynamic property of rotor was not taken into
account and the time variation of cage angular velocity was not introduced into the numerical procedure.

Although many researchers have investigated the characteristics of ball bearings due to the effect of internal
clearance or waviness, no studies have been published on dynamic analysis of ball bearings with both internal
clearance and waviness considering 5dof. Hence, this paper will present a 5dof dynamic model to study the
dynamic performance of ball bearings due to the effect of both internal clearance and waviness at high speed,
where the centrifugal force and gyroscopic moment from balls should be taken into account. Furthermore, the
cage speed will be considered a time-variation parameter related with the orbital speed of balls. Numerical
results obtained from the proposed model will be validated with prior authors’ experimental results and
already existing models. Then the system stability and dynamic characteristics of a rotor bearing system will be
investigated under the effects of internal clearance, waviness, axial preload and radial load.
2. Dynamic model

In order to investigate the dynamic characteristics of a rotor bearing system, the nonlinear bearing forces
have to be determined first, and then the differential equations of motion for the system can be formulated.
2.1. Coordinate systems and transformations

Two sets of coordinate systems, as shown in Fig. 1, are defined for the purpose of numeric analysis. The
inertial coordinate system ðx; y; zÞ, which is fixed in space, is a convenient orthogonal set of coordinates with
the origin at the bearing (inner race) center. The z-axis is along the bearing rotational axis. The local rolling
element coordinate system ðr;Z;fÞ, with the same z-axis and origin at the nominal position of the inner race
center of curvature, is fixed in the rolling element.
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Fig. 1. Bearing coordinate systems.
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For simplifying the expression in this paper, it is defined that the blank superscript referring to the variable
indicates a time of t.

The general motion and load of the bearings can be completely described in 5dof. Thus, the displacement
vector of the bearing center can be defined in the inertial coordinate system with respect to the mass center of
the rotor. The vector, with components of the translation motions x,y,z and the angular displacements yx, yy,
can be written as

fUg ¼ fx y z yx yyg
T. (1)

The rolling element can be located with the displacement vector of the inner race center of curvature in the
local rolling element coordinate system. For the jth ball, the displacement vector can be expressed as

fujg ¼ furj uzj ufjg
T. (2)

With the small motion assumption, the relationship between {uj} and {U} is as follows:

fujg ¼ ½Tj �fUg þ fDW jg, (3)

where [Tj] is transformation matrix

½Tj� ¼

cosjj sinjj 0 �ðzp þ qijÞ sinjj ðzp þ qijÞ cosjj

0 0 1 ðrp þ pijÞ sinjj �ðrp þ pijÞ cosjj

0 0 0 � sinjj cosjj

2
64

3
75 (4)

and fDW jg is the relative waviness vector of the inner and outer races:

fDW jg ¼ fðpij � pojÞ ðqij � qojÞ 0gT. (5)

This transformation relation is more general than that expressed in Refs. [15,16] where the waviness was left
out of account. The angular location of the jth rolling element (Fig. 2) can be obtained by

jj ¼
2pðj � 1Þ

N
þ cc þ j0. (6)
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It was assumed that the cage angular velocity is an invariable in Refs. [16,25]. Then the angular location of the
cage, cc, is taken to be linear in time. However, this assumption is inappropriate as the clearance and waviness
are taken into account. According to the intercoordination between the cage motion and balls motion, the
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Fig. 2. Bearing geometry and waviness model.
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cage speed can be determined by the mean value of orbital angular velocities of balls that have contact with the
inner race, as shown below.

oc ¼
XN

j¼1

wijomj

,XN

j¼1

wij. (7)

Thus, the angular location of the cage can be expressed as an incremental form:

ctþDt
c ¼ ct

c þ ot
c � Dt. (8)
2.2. Waviness model

The geometrical imperfections are often called waviness if its wavelength is much longer than the Hertzian
contact width. As a source of vibration, waviness should be considered in modeling.

If it is assumed that the waviness of periodic lobes is described as a sinusoidal function, the localized defects
could be expressed by the superposition of the several sinusoidal functions appropriately [24]. Note that the
cage angular velocity is a time varying parameter. Then the radial waviness of the inner and outer race, as
shown in Fig. 2, can be expressed as

pij ¼
X1
n¼1

Ain cos½nðcc � oitÞ þ 2pðj � 1Þ=N þ xin�, (9)

poj ¼
X1
n¼1

Aon cos½nðcc � ootÞ þ 2pðj � 1Þ=N þ xon� (10)

and the axial waviness of the inner and outer race can be expressed as follows:

qij ¼
X1
n¼1

Bin cos½nðcc � oitÞ þ 2pðj � 1Þ=N þ Zin�, (11)

qoj ¼
X1
n¼1

Bon cos½nðcc � ootÞ þ 2pðj � 1Þ=N þ Zon�. (12)
Mg j Qo j

Qi j

Fo j

�i j

�o j

�b j

� j
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	oj

Mg j
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	ij

Fig. 4. Ball forces and moments [4].
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If the angle difference of two contact points, where the ball is in contact with the inner and outer race
respectively, is 1801, the ball waviness in contact with the inner and outer race (Fig. 2) can be given by

wij ¼
X1
n¼1

Cnj cosðncbj þ znjÞ, (13)

woj ¼
X1
n¼1

Cnj cos½nðcbj þ pÞ þ znj �, (14)
Table 1

Specification of ball bearing

Parameter Value

Number of balls, N 18

Ball diameter, Db 19.05mm

Pitch diameter, Dp 140mm

Inner race curvature radius, ri 10.2870mm

Outer race curvature radius, ro 9.906mm

Nominal contact angle, a0 251

Inner race clearance, ci 0.004mm

Outer race clearance, co 0.004mm

Test data [28]
Gupta analysis [28]
Proposed analysis
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Fig. 5. The predicted cage speed compared to the speed determined from the test data and Gupta analysis [28].
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where the angular location of the jth ball can be calculated from

ctþDt
bj ¼ ct

bj þ ot
bj � Dt, (15)

which is analogous to Eq. (8).

2.3. Ball equilibrium

Assume that the outer race is stationary and the inner race is displaced under the bearing loading, as shown
in Fig. 3. Then the kinematic constraint and force equilibrium equations of a ball can be formulated as in this
section. For a stationary inner race and a rotating outer race or simultaneous rotation of the outer and inner
races, similar formulas can also be expressed.

Consider the effect of internal clearance, waviness and ball oversize. In the nominal situation ðfUg ¼ f0gÞ,
the distances between the ball center, and the inner and outer race centers of curvature, respectively, can be
given by

Lij ¼ ri � ðDb þ hjÞ=2� wij � ci, (16)

Loj ¼ ro � ðDb þ hjÞ=2� woj � co. (17)

In high-speed operation of ball bearings, the centrifugal forces and gyroscopic moment of ball are
significant and must be considered in analysis. The inner and outer race contact angles are no longer equal
because of the body forces resulting from the ball’s motion, as shown in Fig. 3. The geometric relationships
can be written as follows:

tan aij ¼
Lij sin a0 þ uz � vz

Lij cos a0 þ ur � vr

, (18)

tan aoj ¼
Loj sin a0 þ vz

Loj cos a0 þ vr

, (19)
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Fig. 6. Comparison of the x-displacement for three models, Pz ¼ 800N, o ¼ 2000 rpm.
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lij ¼
Lij cos a0 þ urj � vrj

cos aij

¼
Lij sin a0 þ uzj � vzj

sin aij

, (20)

loj ¼
Loj cos a0 þ vrj

cos aoj

¼
Loj sin a0 þ vzj

sin aoj

. (21)

The contact deformation between the ball and race are as follows:

dij ¼ lij � Lij � ci, (22)

doj ¼ loj � Loj � co, (23)
10000

9500

9000

8500
0

0

-100

-200

-300

-400

200

100

-100

-200

0

200 400 600 800 1000 1200 1400 1600

0 200 400 600 800 1000 1200 1400 1600

0 200 400 600 800 1000 1200 1400 1600

C
ag

e 
sp

ee
d 

(r
pm

)
z-

di
sp

la
ce

m
en

t 
(µ µ

 m
)

x-
di

sp
la

ce
m

en
t 

(µ
 m

)

Axial preload (N)

Fig. 7. Cage speed, z- and x-displacement variation on axial preload, ci ¼ co ¼ 4e�6m, o ¼ 20 000 rpm.



ARTICLE IN PRESS
B. Changqing, X. Qingyu / Journal of Sound and Vibration 294 (2006) 23–4832
where the negative values mean loss of contact. If the contact deformation is positive, the contact force could
be calculated using the Hertzian contact theory; otherwise no load is transmitted. So the contact force can be
expressed as

Qij ¼ wijKijd
3=2
ij , (24)

Qoj ¼ wojKojd
3=2
oj , (25)

where

wij ¼
1; dij40;

0; dijp0

(
(26)

and

woj ¼
1; doj40;

0; dojp0:

(
(27)

The load–deflection constants between the ball and each race, Kij and Koj, may be obtained using the simplified
solution in Refs. [26,27] and are represented in Appendix A.

Fig. 4 shows the forces and moments acting on a ball in a high-speed ball bearing. The equilibrium of forces
in the horizontal and vertical directions can thus be written with reference to Fig. 4.

grj

gzj

( )
¼

Qij cos aij �Qoj cos aoj þ
lijMgj

Db

sin aij �
lojMgj

Db

sin aoj þ F ej

Qij sin aij �Qoj sin aoj �
lijMgj

Db

cos aij þ
lojMgj

Db

cos aoj

8>>><
>>>:

9>>>=
>>>;
¼

0

0

� �
. (28)

The centrifugal force and gyroscopic moment can be described as follows:

Fej ¼
Dp þ 2vrj

2
mbjo2

mj , (29)

Mgj ¼ Ibjobjomj sin bj. (30)
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Fig. 8. Periodic orbit at Pz ¼ 800N.
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It is assumed that the operating conditions of the ball bearing are so appropriate that the race control
theory [3] is applicable. Then the unknown quantities in Eqs. (29), (30), bj, obj and omj, could be conveniently
determined and shown in Appendix B.

Eq. (28) is a set of nonlinear equations with two unknown ball center displacements vrj and vzj. For a given
inner race position, {U}, the ball center displacements may be solved by applying the Newton–Raphson
technique:

vrj

vzj

( )
iþ1

¼
vrj

vzj

( )
i

�

qgrj

qvrj

qgrj

qvzj

qgzj

qvrj

qgzj

qvzj

2
6664

3
7775
�1

i

grj

gzj

( )
i

. (31)

The Jacobian matrix is explained in more detail in Appendix C.
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2.4. Contact forces and equations of motion

So the contact forces for the jth rolling element in the local rolling element coordinate system are written as

fQjg ¼

Qrj

Qzj

Qfj

8><
>:

9>=
>; ¼

�Qij cos aij �
lijMgj

Db

sin aij

�Qij sin aij þ
lijMgj

Db

sin aij

�
lijMgj

Db

ri

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
. (32)

The contact force vector for each rolling element can be transformed to an equivalent force vector in the
inertial coordinate system using the transformation matrix, [Tj]. Therefore summing the equivalent vectors for
all rolling elements, the total bearing force vector is obtained from

fFg ¼ fF x F y Fz Mx Myg
T ¼

XN

j¼1

½Tj�
TfQjg. (33)

The equations of motion for a rotor bearing system may be written as

½m�f €X g þ ½d�f _X g þ ½k�fX g ¼ ff ðX ; tÞg, (34)
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where the force vector {f} could include the total nonlinear bearing forces, external load, gravity load and
unbalance load.

For a 5dof system, the equations of motion can be represented as follows:

m €x ¼ F x þ Px þmeo2 cosot,

m €y ¼ Fy þ Py þmeo2 sinot,

m€z ¼ Fz þ P,

Ir
€yx þ Izo_yy ¼Mx,

Ir
€yy � Izo_yx ¼My, ð35Þ

where meo2 indicates the unbalance load due to the rotor mass eccentricity e.
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Using the Newmark-b method, the differential equations of motion can be solved and the transient
responses at every time increment are obtained. Note that the iterations at every time increment should be
applied to achieving an adequate accuracy.

3. Results and discussion

3.1. Validation of the ball bearing model

The applicability of the ball bearing model to reality can be demonstrated by experiment. Table 1 shows the
dimensions of the ball bearing used by Gupta [28]. According to the bearing geometry reported in Ref. [28],
the approximate mass of the rotor bearing system is m ¼ 12:17 kg and the radial and polar mass moment of
inertia are Ir ¼ 0:0330 kgm2 and Iz ¼ 0:0609 kgm2, respectively. Then the rotor bearing system can be
modeled by the differential equations of motion, Eq. (35).
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Let the rotor mass eccentricity e be 2e�5m. At the shaft speed o ¼ 2500,5000,10 000, and 20 000 rpm,
respectively, the variation of the cage speed is calculated and depicted in Fig. 5, where the experimental data
and Gupta analysis [28] are also described. It shows that the results obtained from the proposed model are in
good agreement with the test data and more reasonable than Gupta analysis, especially at high speed.

With the theoretical verification the ball bearing model can be checked if the mathematical model gives
results which are equivalent to other mathematical models. In low-speed operation, the centrifugal force and
gyroscopic moment from balls exert slight effects, and then the proposed model can be compared with two
already existing models, 5dof model without considering high-speed effects and 5dof model only with ball
centrifugal force. Fig. 6 shows the comparison of x-displacement for three models at low speed o ¼ 2000 rpm.
Clearly, these three solutions are closely similar. Note that the better agreement with the proposed analysis is
achieved when the ball centrifugal force is taken into account. Thus, the small differences between the three
curves in Fig. 6 can be attributed to the effects of centrifugal force and gyroscopic moment from balls.
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3.2. Effect of the axial preload

The cage speed, z- and x-displacement variation on axial preload are shown in Fig. 7 when
ci ¼ co ¼ 4e�6m, e ¼ 1e�5m and o ¼ 20 000 rpm. It can be found that the peak-to-peak amplitude of cage
speed rises markedly when the axial preload is less than 800N. The changes in z- and x-displacement are
similar to that in cage speed. It means that the periodic solution loses stability according to the discussion in
the following, and the system stability can be determined with the aid of the Floquet theory [29].

Fig. 8 depicts the three-dimensional period orbit when the axial preload is Pz ¼ 800 N and
ci ¼ co ¼ 4e�6m, e ¼ 1e� 5m. Stability analysis shows that the leading Floquet multipliers are
�7.791172.5389i and the absolute value of the leading Floquet multipliers is 0.8194, less than one, which
indicates that the periodic solution of the system is stable in the Liapunov sense. The time domain responses of
the period motion for cage speed and x-displacement are shown in Fig. 9 and the corresponding power spectra
are plotted in Fig. 10, where ocp represents the principal frequency of cage speed. As the response is stable
periodic solution, ocp approximates to the ball passage frequency [7], which has been defined as the arithmetic
product of the number of balls and the cage speed that is assumed as a fixed constant. Referring to the power
spectra of the displacement in x-direction in Fig. 10, the resonant frequency, equal to shaft frequency o,
indicates the response is a period-1 motion.

At Pz ¼ 600 N, the leading Floquet multipliers are �1.204171.4228i and the absolute value of the leading
Floquet multipliers is 1.8639. This shows that a pair of complex–conjugate Floquet multipliers leaves the unit
circle in the complex plane, which indicates that the periodic response loses stability and undergoes a
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secondary Hopf bifurcation to a quasi-periodic motion. The quasi-periodic orbit is depicted in Fig. 11.
It is shown that not only the radial amplitude but also the axial amplitude has a dramatic increase. By
Poincarè map plotted in Fig. 12 shows a closed curve which indicates that the response is a quasi-periodic
motion. Comparing Fig. 13 with Fig. 9, it can be seen that the time history for cage speed and x-displacement
become complicated and the peak-to-peak amplitudes rise significantly. Moreover, the principal frequency of
the cage speed, which is just the resonant frequency of z-displacement, is far less than the ball passage
frequency (Fig. 14). Referring to the power spectra of the z- and x-displacement in Fig. 14, all the frequency
peaks are some combinations of two basic components o and ocp, but independent of the ball passage
frequency.
3.3. Effect of the clearance

In order to investigate the vibration characteristics under the effect of the clearance, the axial
and radial peak-to-peak amplitudes are analyzed in the axial preload interval Pz ¼ 600 to 1600N for four
values of clearance ci ¼ co ¼ 4e�6m, 10e�6m, 20e�6m and 30e�6m. The results are described in Fig. 15
where the dramatic increase of peak-to-peak amplitude implies the periodic solution becomes unstable
according to the stability analysis. It is clearly shown that the critical axial preload where the periodic
solution loses stable increases with an increase in clearance value. Moreover, the other stable interval occurs
near Pz ¼ 750N when ci ¼ co ¼ 20e�6m and increases as clearance increases. Fig. 15 is shown that
the new stable interval expands from near Pz ¼ 750N at ci ¼ co ¼ 20e�6m to between Pz ¼ 750 and 850N at
ci ¼ co ¼ 30e�6m. In the axial preload interval of stable periodic solution, the radial peak-to-peak
amplitude increases as the axial preload increases and decreases as the clearance rises. It interesting
that the axial peak-to-peak amplitude remains unchanged in the stable axial preload interval. Furthermore,
Fig. 16 shows the effect of clearance variation on maximum cage speed as a function of axial preload.
The maximum cage speed decreases with an increase in axial preload and clearance when the system response
is stable.
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3.4. Effect of the radial load

Fig. 17 plots the z-displacement variation on axial preload under the effect of the radial load. The critical
axial preload where the system response becomes unstable changes from 1350 to 1150N when the radial load
is from Px ¼ Py ¼ 500N to Px ¼ Py ¼ 200N. Moreover, the critical axial preload is 650N at Px ¼ Py ¼ 0, as
Fig. 7 shows. It indicates that the critical axial preload decreases as radial load falls. Otherwise an increase in
clearance leads to an increase in critical axial preload and a decrease in axial peak-to-peak amplitude.

Figs. 18 and 19 depict the frequency response when the radial load is taken into account. When Px ¼

Py ¼ 200N and Pz ¼ 1200N, the periodic motion is stable and the power spectra of cage speed and x-
displacement are plotted in Fig. 18. Note that the principal frequency of cage speed ocp approximates not to
the ball passage frequency (Fig. 10), but to the resonant frequency of the radial motion, o due to the
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contribution of radial load. Fig. 19 shows some combinations of the two basic frequencies o and ocp when the
response is a quasi-periodic motion at Px ¼ Py ¼ 200N and Pz ¼ 1100N. It is shown that the power spectra
of cage speed are more complex than that shown in Fig. 14 and ocp drops significantly when the radial load is
applied.

3.5. Effect of the waviness

Fig. 20 describes the effect of waviness on the time history of cage speed. The inner race and outer race have
the wariness of order 18 and amplitude 1e�6m. The ball has waviness of order 2 and amplitude 1e�6m. Due
to the high-speed effect of ball centrifugal force and gyroscopic moment, the cage speed variation under the
effect of outer race waviness is more considerable than that under the effect of inner race and ball waviness.
Moreover, the effect of ball waviness on cage speed variation is unapparent.

4. Conclusion

A 5dof transient dynamic model of ball bearings is presented to investigate the dynamic stability and
vibration characteristics of rotor bearing system. The effects of both the clearance between the balls and races
and the waviness on bearing running surface are taken into account. Further, the model includes the high-
speed effects of the ball centrifugal force and gyroscopic moment. The cage speed is determined by the orbital
speed of balls. The results obtained from the proposed model are in good agreement with prior authors’ test
data and already existing models. It is shown that the proposed analysis is more reasonable than their numeric
analysis, especially at high speed.

From the investigations of the nonlinear stability and dynamic properties of a rigid rotor supported by a
ball bearing, the following conclusions can be drawn:
�
 When the axial preload is less than the critical value, the periodic solution loses stability and the peak-to-
peak amplitudes of cage speed and axial and radial displacement have a dramatic increase.
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�
 The principal frequency of cage speed is a basic component of system vibration frequencies. It could be far
less than the ball passage frequency as the system response is unstable or the radial load exists.

�
 Effect of clearance on system stability is significant. The critical axial preload where the periodic solution

loses stability increases with an increase in clearance value. In the axial preload interval of stable periodic
solution, the radial peak-to-peak amplitude decreases and the axial peak-to-peak amplitude remains
unchanged as the clearance rises. Furthermore, the maximum cage speed decreases with an increase in axial
preload and clearance.

�
 The critical axial preload increases with radial load.
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�
 The effect of ball waviness on cage speed variation is unapparent and the effect of outer race waviness is
more considerable than that of inner race and ball waviness.
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Appendix A. Load-deflection constants

The classical Hertzian solution can be simplified using a linear regression by the method of least squares.
The load–deflection constants between the ball and each race, Kij and Koj, can be expressed as

Kij ¼
pE

1� n2
k̄ij

R̄ij Ēij

4:5F̄
3
ij

 !1=2

; Koj ¼
pE

1� n2
k̄oj

R̄ojĒoj

4:5F̄
3
oj

 !1=2

, (A.1)

where E and n are the Young’s modulus and by Poisson ratio of contact material and k̄, Ē and F̄ can be
expressed, respectively, as follows:

k̄ij ¼ 1:0339ðRyij=RxijÞ
0:6360; k̄oj ¼ 1:0339ðRyoj=RxojÞ

0:6360, (A.2)

Ēij ¼ 1:0003þ
0:5968

Ryij=Rxij

; Ēoj ¼ 1:0003þ
0:5968

Ryoj=Rxoj

, (A.3)

F̄ ij ¼ 1:5277þ 0:6023 lnðRyij=RxijÞ; F̄ oj ¼ 1:5277þ 0:6023 lnðRyoj=RxojÞ, (A.4)

R̄ij ¼
RxijRyij

Rxij þ Ryij

; R̄oj ¼
RxojRyoj

Rxoj þ Ryoj

. (A.5)

The effective radius can be written for the ball–inner-race contact as

Rxij ¼
DbðDp �Db cos aijÞ

2Dp

; Ryij ¼
ri

2ri=Db � 1
. (A.6)

and for the ball–outer-race contact as

Rxoj ¼
DbðDp þDb cos aojÞ

2Dp

; Ryoj ¼
ro

2ro=Db � 1
. (A.7)

Appendix B. Angle between ball rotational axis and bearing centerline and the angular velocity of ball and ball

orbital

According to the race control theory, the angle between the ball rotational axis and the bearing centerline bj,
the angular velocity of ball obj and angular velocity ball orbital omj can be determined and shown as

Inner race control:

lij ¼ 1; loj ¼ 1, (B.1)

tan bj ¼
sin aij

cos aij � g
, (B.2)

obj ¼ �oi

ðcos aij � gÞð1þ g cos aojÞ

g½1þ cosðaij � aojÞ� cos bj

, (B.3)

omj ¼ oi

cosðaij � aojÞ � g cos aoj

1þ cosðaij � aojÞ
. (B.4)

Outer race control:

lij ¼ 0; loj ¼ 2, (B.5)

tan bj ¼
sin aoj

cos aoj þ g
, (B.6)
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obj ¼ �oi

ðcos aoj þ gÞð1� g cos aijÞ

g½1þ cosðaij � aojÞ� cos bj

, (B.7)

omj ¼ oi

1� g cos aij

1þ cosðaij � aojÞ
. (B.8)

Appendix C. Components of Jacobian matrix

The equilibrium Jacobian matrix is needed in Eq. (31) to solve the ball displacement. The partial derivatives
with respect to the displacement of jth ball center can be given by

qgrj

qvrj

¼ cos aij

qQij

qvrj

�Qij sin aij

qaij

qvrj

� cos aoj

qQoj

qvrj

þQoj sin aoj

qaoj

qvrj

þ
lij sin aij � loj sin aoj

Db

qMgj

qvrj

þ
lijMgj cos aij

Db

qaij

qvrj

�
lojMgj cos aoj

Db

qaoj

qvrj

þ
qFej

qvrj

, ðC:1Þ

qgrj

qvzj

¼ cos aij

qQij

qvzj

�Qij sin aij

qaij

qvzj

� cos aoj

qQoj

qvzj

þQoj sin aoj

qaoj

qvzj

þ
lij sin aij � loj sin aoj

Db

qMgj

qvzj

þ
lijMgj cos aij

Db

qaij

qvzj

�
lojMgj cos aoj

Db

qaoj

qvzj

þ
qFej

qvzj

, ðC:2Þ

qgzj

qvrj

¼ sin aij

qQij

qvrj

þQij cos aij

qaij

qvrj

� sin aoj

qQoj

qvrj

�Qoj cos aoj

qaoj

qvrj

�
lij cos aij � loj cos aoj

Db

qMgj

qvrj

þ
lijMgj sin aij

Db

qaij

qvrj

�
lojMgj sin aoj

Db

qaoj

qvrj

, ðC:3Þ

qgzj

qvzj

¼ sin aij

qQij

qvzj

þQij cos aij

qaij

qvzj

� sin aoj

qQoj

qvzj

�Qoj cos aoj

qaoj

qvzj

�
lij cos aij � loj cos aoj

Db

qMgj

qvzj

þ
lijMgj sin aij

Db

qaij

qvzj

�
lojMgj sin aoj

Db

qaoj

qvzj

, ðC:4Þ

where

qaij

qvrj

¼
sin aij

lij

;
qaoj

qvrj

¼ �
sin aoj

loj

, (C.5)

qaij

qvzj

¼ �
cos aij

lij

;
qaoj

qvzj

¼
cos aoj

loj

, (C.6)

and

qQij

qvrj

¼ wijd
3=2
ij

qKij

qvrj

� 1:5wijKijd
1=2
ij cos aij , (C.7)

qQoj

qvrj

¼ wojd
3=2
oj

qKoj

qvrj

þ 1:5wojKojd
1=2
oj cos aoj , (C.8)

qQij

qvzj

¼ wijd
3=2
ij

qKij

qvzj

� 1:5wijKijd
1=2
ij sin aij, (C.9)

qQoj

qvzj

¼ wojd
3=2
oj

qKoj

qvzj

þ 1:5wojKojd
1=2
oj sin aoj . (C.10)
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qKij=qvrj and qKij=qvrj can be expressed as a uniform form qKij=qv, in which v denotes vr or vz; then

qKij

qv
¼

pE

1� n2
R̄ijĒij

4:5F̄
3
ij

 !1=2
qk̄ij

qv
þ

k̄ij

2R̄ijĒij F̄ ij

Ēij F̄ ij

qR̄ij

qv
þ R̄ijF̄ ij

qĒij

qv
� 3R̄ijĒij

qF̄ ij

qv

� �� �
, (C.11)

qk̄ij

qv
¼ 0:6576ðRyij=RxijÞ

�0:3640 qðRyij=RxijÞ

qv
, (C.12)

qĒij

qv
¼ �

0:5968

ðRyij=RxijÞ
2

qðRyij=RxijÞ

qv
, (C.13)

qĒij

qv
¼

0:6023

Ryij=Rxij

qðRyij=RxijÞ

qv
. (C.14)

The expressions about qKoj=qv are analogous to the above equations when all subscripts i in those equations
are shifted with subscript o. The only difference between qKij=qv and qKoj=qv is as follows:

qðRyij=RxijÞ

qv
¼ �

2riDbDp sin aij

ð2ri �DbÞðDp �Db cos aijÞ
2

qaij

qv
, (C.15)

qðRyoj=RxojÞ

qv
¼ �

2roDbDp sin aoj

ð2ri �DbÞðDp þDb cos aojÞ
2

qaoj

qv
, (C.16)

qR̄ij

qv
¼

2r2i D2
bDp sin aij

½ð2ri �DbÞðDp �Db cos aijÞ þ 2riDp�
2

qaij

qv
, (C.17)

qR̄oj

qv
¼

2r2oD2
bDp sin aoj

½ð2ro �DbÞðDp þDb cos aojÞ þ 2roDp�
2

qaoj

qv
. (C.18)

The partial derivatives of the centrifugal force with respect to the displacement can be calculated from

qFej

qvrj

¼ mbomj ðDp þ 2vrjÞ
qomj

qvrj

þ omj

� �
, (C.19)

qF ej

qvzj

¼ mbomjðDp þ 2vrjÞ
qomj

qvzj

. (C.20)

Other unknown partial derivatives with respect to v, which denotes vrj or vzj, can be expressed as follows:

qMgj

qv
¼ 0:1mbD2

b obj sin bj

qomj

qv
þ omj sin bj

qobj

qv
þ omjobj cos bj

qbj

qv

� �
, (C.21)

Inner race control:

qbj

qv
¼

1� g cos aij

1þ g2 � 2g cos aij

qaij

qv
, (C.22)

qomj

qv
¼ oi

�ð1þ g cos aojÞ sinðaij � aojÞðqaij=qvÞ þ ½g sin aij þ g sin aoj þ sinðaij � aojÞ�ðqaoj=qvÞ

½1þ cosðaij � aojÞ�
2

, (C.23)

qobj

qv
¼ �oi

H1 ðqaij=qvÞ þH2 ðqaoj=qvÞ þH3 ðqbj=qvÞ

g cos bj½1þ cosðaij � aojÞ�
2

, (C.24)

H1 ¼ �ð1þ g cos aojÞ½sin aij þ sin aoj þ g sinðaij � aojÞ�, (C.25)
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H2 ¼ �ðcos aij � gÞ½g sin aij þ g sin aoj þ sinðaij � aojÞ�, (C.26)

H3 ¼ tan bjðcos aij � gÞð1þ g cos aojÞ½1þ cosðaij � aojÞ�, (C.27)

Outer race control:

qbj

qv
¼

1þ g cos aoj

1þ g2 þ 2g cos aoj

qaoj

qv
, (C.28)

qomj

qv
¼ oi

½g sin aij þ g sin aoj þ sinðaij � aojÞ�ðqaij=qvÞ � ð1� g cos aijÞ sinðaij � aojÞðqaoj=qvÞ

½1þ cosðaij � aojÞ�
2

, (C.29)

qobj

qv
¼ �oi

H1 ðqaij=qvÞ þH2 ðqaoj=qvÞ þH3 ðqbj=qvÞ

g cos bj½1þ cosðaij � aojÞ�
2

, (C.30)

H1 ¼ ðcos aoj þ gÞ½g sin aij þ g sin aoj þ sinðaij � aojÞ�, (C.31)

H2 ¼ �ð1� g cos aijÞ½sin aij þ sin aoj þ g sinðaij � aojÞ�, (C.32)

H3 ¼ tan bjðcos aoj þ gÞð1� g cos aijÞ½1þ cosðaij � aojÞ�. (C.33)
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